Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958105

RESUMO

Anoxia is a significant challenge for most animals, as it can lead to tissue damage and death. Among amphibians, the Siberian frog Rana amurensis is the only known species capable of surviving near-zero levels of oxygen in water for a prolonged period. In this study, we aimed to compare metabolomic profiles of the liver, brain, and heart of the Siberian frog exposed to long-term oxygen deprivation (approximately 0.2 mg/L water) with those of the susceptible Far Eastern frog (Rana dybowskii) subjected to short-term hypoxia to the limits of its tolerance. One of the most pronounced features was that the organs of the Far Eastern frog contained more lactate than those of the Siberian frog despite a much shorter exposure time. The amounts of succinate were similar between the two species. Interestingly, glycerol and 2,3-butanediol were found to be significantly accumulated under hypoxia in the Siberian frog, but not in the Far Eastern frog. The role and biosynthesis of these substances are still unclear, but they are most likely formed in certain side pathways of glycolysis. Based on the obtained data, we suggest a pathway for metabolic changes in the Siberian frog under anoxia.

2.
Metabolites ; 13(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37887413

RESUMO

The Animal Metabolite Database (AMDB, https://amdb.online) is a freely accessible database with built-in statistical analysis tools, allowing one to browse and compare quantitative metabolomics data and raw NMR and MS data, as well as sample metadata, with a focus on the metabolite concentrations rather than on the raw data itself. AMDB also functions as a platform for the metabolomics community, providing convenient deposition and exchange of quantitative metabolomic data. To date, the majority of the data in AMDB relate to the metabolite content of the eye lens and blood of vertebrates, primarily wild species from Siberia, Russia and laboratory rodents. However, data on other tissues (muscle, heart, liver, brain, and more) are also present, and the list of species and tissues is constantly growing. Typically, every sample in AMDB contains concentrations of 60-90 of the most abundant metabolites, provided in nanomoles per gram of wet tissue weight (nmol/g). We believe that AMDB will become a widely used tool in the community, as typical metabolite baseline concentrations in tissues of animal models will aid in a wide variety of fundamental and applied scientific fields, including, but not limited to, animal modeling of human diseases, assessment of medical formulations, and evolutionary and environmental studies.

3.
Sci Rep ; 12(1): 16850, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207404

RESUMO

In this work, we for the first time report the identification of UV filters in the bird eye lens. We found that lenses of some raptors (black kite, common buzzard) and waterfowl (birds from Podicipedidae family) contain unusually high levels of reduced nicotinamide adenine dinucleotide (NADH)-a compound with high absorption in the UV-A range with a maximum at 340 nm. The lens metabolome of these birds also features an extremely low [NAD +]/[NADH] ratio. Chemometric analysis demonstrates that the differences between the metabolomic compositions of lenses with low and high NADH abundances should be attributed to the taxonomic features of bird species rather to the influence of the low [NAD +]/[NADH] ratio. We attributed this observation to the low metabolic activity in lens fiber cells, which make up the bulk of the lens tissue. Photochemical measurements show that properties of NADH as a UV filter are as good as that of UV filters in the human lens, including strong absorption in the UV-A spectral region, high photostability under both aerobic and anaerobic conditions, low yields of triplet state, fluorescence, and radicals under irradiation. Lenticular UV filters protect the retina and the lens from photo-induced damages and improve the visual acuity by reducing chromatic aberrations; therefore, the results obtained contribute to our understanding of the extremely high acuity of the raptor vision.


Assuntos
Cristalino , Lentes , Fluorescência , Humanos , Cristalino/metabolismo , NAD/metabolismo , Raios Ultravioleta
4.
Antioxidants (Basel) ; 10(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34573105

RESUMO

Ovothiol A (OSH) is one of the strongest natural antioxidants. So far, its presence was found in tissues of marine invertebrates, algae and fish. Due to very low pKa value of the SH group, under physiological conditions, this compound is almost entirely present in chemically active thiolate form and reacts with ROS and radicals significantly faster than other natural thiols. In biological systems, OSH acts in tandem with glutathione GSH, with OSH neutralizing oxidants and GSH maintaining ovothiol in the reduced state. In the present work, we report the rate constants of OSH oxidation by H2O2 and of reduction of oxidized ovothiol OSSO by GSH and we estimate the Arrhenius parameters for these rate constants. The absorption spectra of reaction intermediates, adduct OSSG and sulfenic acid OSOH, were obtained. We also found that OSH effectively quenches the triplet state of kynurenic acid with an almost diffusion-controlled rate constant. This finding indicates that OSH may serve as a good photoprotector to inhibit the deleterious effect of solar UV irradiation; this assumption explains the high concentrations of OSH in the fish lens. The unique antioxidant and photoprotecting properties of OSH open promising perspectives for its use in the treatment of human diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...